ONAMI | John Keana


John Keana

Professor, University of Oregon


NanoBiotechnology/NanoMedicine, Safer Nanomaterials and Nanomanufacturing

Research Interests

The central theme of John Keana’s research program is the design, synthesis, characterization, and collaborative application of novel molecules. Target molecules are chosen for their relevance to the solution of important problems in biochemistry, molecular biology, neuroscience, or medicine and may be either organic, organometallic, or essentially inorganic in nature. The research program is markedly strengthened by frequent collaboration with research groups in the Institute of Molecular Biology and the Department of Physics at the University of Oregon and research groups at Parke-Davis, CoCensys, Inc. (now Purdue Pharmaceuticals), Cytovia, Inc. (a subsidiary of Maxim Pharmaceuticals) and SUNY Brooklyn. The projects below illustrate synthetic objectives typical of this laboratory. Project 1. Atomic force microscopy (AFM) is a relatively recent and rapidly expanding atomic level analytical technique that directly images three-dimensional surfaces of non-conducting substrates. AFM images are formed by reconstructing the contour of force interactions exerted between the scanning tip and the surface. Although not precisely defined, the resolution of AFM is limited by the large tip size relative to the dimensional parameters of individual substrate molecules. Our AFM project involves the design, synthesis, and collaborative application of tower-shaped molecules that have a broad base and that taper to a single atom or functional group. We envisage attachment of these molecules to a conventional AFM tip by way of three-point attachment at the base. Molecular dimensions are such that only one molecule is expected to be oriented suitably for imaging the sample by the tapered end of the tower.

Visit this researcher's website HERE




Additional Links